当前位置:首页 > 教学资料 > 教学设计

方程的意义教学设计

时间:2024-10-10 04:55:07
方程的意义教学设计

方程的意义教学设计

作为一名为他人授业解惑的教育工作者,常常需要准备教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么问题来了,教学设计应该怎么写?下面是小编为大家整理的方程的意义教学设计,欢迎阅读与收藏。

  方程的意义教学设计 篇1

教学内容:

教科书第1~2页,例1、例2、试一试、练一练,练习一第1~3题。

教学目标:

1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。

教学重点:

理解等式的性质,理解方程的意义。

教学难点:

利用等式性质和方程的意义列出方程。

教学准备:

多媒体课件

教学过程:

一、情景引入

1、出示天平。

知道这是什么吗?你知道它是按照什么原理制造的'吗?

说说你的想法。

如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢?

二、教学新课

1、教学例1。

(1)出示例1图。

你会用等式表示天平两边物体的质量关系吗?把它写出来。

50+50=100(板书)

说说你是怎样想的?

(2)指出等式的左边,等式的右边等概念。

等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)

能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

2、教学例2。

(1)出示例2图。

天平往哪一边下垂说明什么?(哪一边物体的质量多)

你能用式子表示天平两边物体的质量关系吗?

学生独立完成填写,集体汇报。

板书:x+50>100 x+50=150

X+50;200 x+x=200

如果让你把这四个式子分类,应分为几类?为什么?

指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)

知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)

说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)

(2)讨论:等式与方程有什么关系?

小组讨论。

指出:方程一定是等式,但等式不一定是方程。

方程是特殊的等式。他们的关系可以用集合圈表示。

3、教学“试一试”。

独立完成,完成后汇报方法。

让学生说一说,每题中的方程哪个更简洁一些?

指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。

4、完成“练一练。

(1)完成第1题。

独立完成判断后说说想法。

(2)完成第2题。

(3)完成第3题。

交流所列方程,说说你为什么这样列?你是怎么想的?

三、巩固练习

1、完成练习一第1题。

能说说每个线段表示的意思吗?方程怎样列呢?

小组中交流列式。

2、完成练习一第2题。

理解题意,说说数量关系是怎样的?

列出方程并交流。

3、完成练习一第3题。

四、课堂总结

通过学习,你有哪些收获?

板书设计:

方程

等式50+50=100 x+50>100 x+50=150

  方程的意义教学设计 篇2

教学目标:

知识目标:理解与掌握方程的意义,弄清方程和等式两个概念的关系。

能力目标:培养学生认真观察、思考分析问题的能力。

情感目标:激发学生求知欲和好奇心,感受数学探索的乐趣,体会“生活中处处蕴涵数学知识”;渗透数学来源于实际生活辩证唯物主义思想。

教学重点:理解和方掌握程的意义,会用方程的意义去判断一个式子是否是方程。

教学难点:会用方程表示简单情境中的等量关系。

教学准备:教学课件。

教学流程:

一、导入新课:

教师:我们已经学习了用字母表示数,今天学习解简易方程。这部分知识非常重要,掌握了它会使我们多了一种解题方法,可以使某些较难的应用题化难为易,有助于提高我们分析问题和解决问题的能力。

二、探究新知:

(一)探究方程的意义:

介绍天平:(课件出示天平图)

天平实验,引出方程:

1、第一步,称出一只空杯子重100克;

第二步,往杯子里倒人约X克水,使天平出现倾斜。

第三步,增加100克砝码,发现了什么?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?(100+x>200)

第四步,再增加100克砝码,天平往砝码这边倾斜。哪边重些?怎样用式子表示?(100+x;300)

第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?(100+x=250)

2、教师:①观察100+x=250:这是一个等式吗?这个等式有什么特点?

②像100+x=250这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?(方程)

小结:像100+x=250这样的含有未知数的等式,称为方程。

3、深入探讨理解:

①根据方程的含义,方程应该具备哪些条件,

②方程与等式之间有什么关系,你能用集合图来表示吗?

写方程,加深对方程的认识:

三、练习巩固:

1、完成课本第54页做一做。在是方程的式子后面打上“√”。

判断并说胡理由。通过交流使学生明确判断一个式子是不是方程,一看是不是等式,二看有没有未知数。

2、判断,对的在括号里打√,错的.打×。

(1)等式都是方程,方程都是等式。()

(2)含有未知数的式子叫方程。()

(3)不是方程。()

3、用方程表示下面的等量关系。

(1)加上35等于91。(2)的3倍等于57。

(3)减31的差是86。(4)7.8除以等于1.3。

4、先说出下面题目中的数量间的相 ……此处隐藏13177个字……>选一个等式说一说它表示什么意思?

天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)

2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。

3、比较:现在写的这些等式与刚才我们说的那些等式有什么不同吗?

突出含有未知数的等式

这些含有未知数的等式你见过吗?

生:没见过;也可能见过,如:用字母表示数中、求未知数x等。

三、进一步拓宽对等式的理解。

1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的一些现象,仔细看一看,这些生活中的现象之间的关系是不是也能用含有未知数的等式来表示呢?

(师出示四幅生活情境图)

(1)铅笔盒与笔记本共20元。

(2)借出的书与剩下的书共150本。

(3)3瓶相同的色拉油,每瓶x元,共8元。

三、明确特征,归纳概念。

其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的.意义。(板书)

揭示数学上我们把含有未知数的等式叫做方程。

四、深刻领悟,挖掘内涵。

1、黑板上的其它式子为什么不是方程?

2、师:现在同学们知道什么是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生举手)

36-7=29、60+x>70、8+x

6+x=14、7+15=22、5y=40

活动结束了,但思考却刚刚开始,就等式和方程的关系你现在有什么话想说的吗?

(在活动中理解等式与方程的关系)

五、实践应用,拓展外延。

1、你能看图列出方程吗?

图1:天平(2x=500)

图2:四个物体16.8元

图3: 两杯水共有450毫升

2、从文字表述中找出方程

(1)小明从家到学校有500米,他每分钟走50米,走了x分钟。

(2)张师傅每天做x个零件,用了6天做了780个零件。

(3)王涛放学回家后,去商店买了3本精装笔记本,每本y元。他付给售货员阿姨20元,找回2元。

3、李老师头脑中有一幅图,我把它用方程表示了出来,猜一猜,老师头脑中可能会是一幅什么样的图?

出示:5x=200(可提示:如天平图等)

个别交流的基础上同桌互说。

六、全课总结:学习到现在你有哪些收获?

从不能用方程表示到能用方程表示图中的数量关系的一种演变。

图1:买4个小熊猫玩具,每个x元,120元不够

图2:买3个,每个x元,120元还不够

图3:买2个,每个x元,120元正好

延伸:使两只水杯一样多你能有哪些办法?用方程表示,你能吗?

  方程的意义教学设计 篇14

设计说明

1、引导学生边观察、边思考,提高自主学习能力。

《数学课程标准》中指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验的基础上。本教学设计没有将等式、方程的概念强加给学生,而是充分尊重学生的原有知识水平,结合具体情境,运用天平保持平衡的原理来解释各数量之间的相等关系,按照教材上的连环画,通过教师反复操作,一步一步观察,思考每一步骤的数学含义,让学生逐步理解式子中的“=”就是天平的平衡,从而让学生初步体验和感受方程的意义。  2。引导学生辨方程、写方程,重视学情反馈。

数学学习重要的是巩固和应用,因此学习后的学情反馈是很重要的。本设计在学生明确方程的概念后,引导学生自己写方程,识别方程并说出理由的练习,进一步掌握方程的意义,明确判断一个式子是不是方程的`两个要素:一看是不是等式,二看有没有未知数。通过应用反馈,加深对方程特点的理解,提高了学习效率。

课前准备

教师准备:PPT课件、学情检测卡、课堂活动卡

学生准备:小黑板、练习卡片

教学过程

情境引入,体会“等”与“不等”

师:同学们,我们学校一年一度的足球比赛又如火如荼地开始了,昨天的比赛是五(1)班对战五(3)班,由于上半场五(3)班发挥出色,上半场的比分为1∶4,中场休息后,五(1)班马上调整了战术,下半场五(3)班没得分,五(1)班连追了x分。

师:两个班最后的比分是几比几?(学生回答,教师板书:x+1∶4)

师:哪个班赢了?你能用一个数学式子来表示吗?

(学生回答:x+1>4,x+1<4,x+1=4;并注意提问式子的意义)

师:其实在我们的生活中有许多现象是可以用数学式子来表示的。今天我们就来一起学习一个新的数学知识。(教师板书课题:方程的意义)

设计意图:用学生经历的真实活动为情境,充分调动学生的学习积极性,使学生切实感受到数学来源于生活,服务于生活。同时通过熟悉情境的创设,让学生更易理解,更深刻地感受“等”与“不等”,为后面理解方程的意义作铺垫。

情境呈现,抽象模型

1、自学方程的意义,初步感悟新知。(课件出示教材62页情境图)

自学提示:

(1)理解教材62页每幅图画及对应式子的含义。

(2)标示出你认为重要的内容。

(3)思考:方程应该具备哪几个条件?

(4)结合你对方程概念的理解,完成教材63页“做一做”1题。

2、合作学习。

(1)你能自己写几个方程吗?小组内互相订正。

(2)组内交流收获。在小组内互相说一说:你学到了什么?

由组长带领组内成员集体订正教材63页“做一做”1题的答案,说清理由,并将小组内认为不是方程的算式记录在小黑板上。

(3)全班交流。教师展示学生的完成情况,先把答案相同的进行分类,再从答案最少的一块着手分析。遇到问题,学生之间互相解答,加深对方程的意义的理解。

(此环节教师要随机应变,注意提问学生“方程应该具备哪几个条件”。如果出现了对方程理解有困难的同学,再次为学生讲解)

预设:

①全班同学的答案一致,全对。

②一部分小组全对,一部分小组有错误。

这时教师可以先找有错误的一个小组到黑板上汇报讲解。讲解时随时和下面的同学互动交流,在学生的争论中,教师适时引导、提问,指导学生判断正误的方法。

3、整理分类,加深对方程意义的理解。

(1)组织学生分组活动,根据黑板上的算式特点进行分类。

(2)交流汇报,说出分类依据。教师板书。

4、独立完成教材63页“做一做”2题,汇报,集体订正。

5、引导学生独立完成教材66页1题,集体订正,并加以补充:判断0=5z-15是不是方程。

《方程的意义教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式