三角形的内角和数学教案
作为一名无私奉献的老师,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。那么优秀的教案是什么样的呢?以下是小编精心整理的三角形的内角和数学教案,欢迎大家分享。
三角形的内角和数学教案1教学目标
⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与
教师活动:学生活动媒体应用设计意图
目标达成
导入新课
一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?
我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?
三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)
由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的体现出三内角求和的关系
二、动手操作,探究新知
1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数
把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?
我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
3.学生测量
4.汇报的测量结果
除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°
5、巩固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?
环节
三、应用所学,解决问题。
1、基础练习(课本第68页做一做)
在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。
2、判断题
(1)大三角形的内角和大于180度。()
(2)三角形的内角和可能是180度。()
(3)一个三角形中最多只能有一个直角。()
(4)三角形的三个内角分别可能是30度,60度,70度。()
3、求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。
四、总结:这节课你有什么收获?
三角形的内角和数学教案2教学目标
通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。
教学重难点
三角形的内角和
课前准备
电脑课件、学具卡片
教学活动
一、计算三角尺三个内角的和。
出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?
引导学生说出90度、60度、30度。
出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。
提问:请同学们任选一个三角尺,算出他们三个角一共多少度?
学生计算后指名回答。
师:三角尺三个角的和是180度。
二、自主探索,解决问题
提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上
任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动,教师了解学生情况,个别同学加以辅导。
全班交流:让学生分别说出三个角的度数以及它们的和。
提问:你发现了什么?
:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。
三、试一试
要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。
教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以
计算的结果为准。
四、巩固提高
完成想想做做的题目。
第1题
学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。
第2题
指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的和是180度。
第3题
通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。
第4、5、6
引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。
三角形的内角和数学教案3教学内容:
义务教育课程标准实验教科书xx版小学数学四年级下册第42~46页
教学目标:
1、通过量、剪、拼、折等数学活动,让学生亲自实践操作,发现规律,主动推导并得出三角形内角和是180的结论,会应用这一规律进行计算。
2、在操作、验证三角形内角和的过程中,体验解决问题方法的多样性,发展空间观念,提高初步的逻辑思维能力。
教学过程:
一、创设情境,导入新课
1、谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?
2、我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?我们一起去看看吧!
播放课件
详细内容说明:一个大的直角三角形说:我的个头大,我的内角和一定比你们大。一个钝角三角形说:我有一个钝角,我的内角和才是最大的。一个小的锐角三角形很委屈的样子说:是这样吗?(它们在争论谁的内角和大。)
你知道什么是三角形的内角和吗?
通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。
3、故事中到底谁说得对呢 ……此处隐藏3714个字……角形,想办法验证我们的猜想。如果有困难,可以启用老师提供的“智慧锦囊”或者寻求同学的帮助。
智慧锦囊:
(1)要知道三个内角的和,只要知道三个角分别是多少度就可以了,你觉得哪个工具可以测出角的度数?试一试。
(2)180°的角是个特殊的角,它是个什么角?你能想办法将这三个内角转化成这样的角吗?
3.汇报交流
师:谁来汇报你的验证结果?
(1)测算法
师小结:用量的方法验证既然有误差、不准,结论就难以让人信服,那有没有办法更好地验证我们的猜测呢?谁还有别的方法?
(2)剪拼法
(3)折拼法
师小结:用拼和折的方法都能将三角形的三个内角转化成一个平角,从而借助我们学过的平角知识证明三角形的内角和确实是180°,你们真会动脑筋!
(4)推算法
①把一个长方形沿对角线分成两个完全一样的直角三角形。因为长方形的内角和是360°,所以一个直角三角形的内角和等于180°。(课件演示过程)
师:直角三角形的内角和已经证明了是180°,现在我们只要能证明:锐角三角形和钝角三角形的内角和也是180°就可以了。
课件演示
②一个锐角三角形,从顶点往下画一条垂线,将三角形分为两个直角三角形,因为我们已经知道直角三角形的内角和是180°,所以两个直角三角形的度数和就是360°,减去两个直角的和180°,就是要证明的三角形内角和,肯定是180°。
4.总结提炼
师:孩子们,刚才我们通过“量——拼——折——推”的方法分类验证了三角形的内角和是( )度?
现在可以下结论了吗?
(板书:三角形三个内角和等于180°。)
师:那在“三角形的争吵中”谁是对的?
(达成目标3。此环节让学生通过“量——拼——折——推”的方法分类验证了三角形的内角和是180度。此环节充分体现了学生学习的主动性。)
(四)利用三角形内角和是180解决问题
1、看图,求出未知角的度数。
2、书本85页“做一做”
在一个三角形中,∠1=140。,∠3=25。,求∠2的度数。
(达成目标3和目标4:能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”达成目标3和目标4.)
三、目标达成检测方案:
1、求出三角形各个角的度数。
2、埃及金字塔建于4500年前的埃及古王朝时期,它是用巨大石块修砌成的方锥形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各异,外表有四个侧面,每个侧面都是等腰三角形。人们量得这个三角形的一个底角是64度。
四、课堂小结,提升认识
同学们,这节课你有哪些收获?我们是怎样得到“三角形内角和等于180度”这个结论的?
师:是啊,今天咱们不但知道了三角形的内角和是180°,更重要的是我们经历了探究三角形内角和的验证方法。咱们从猜想出发,经过验证(用量、拼、折、推等)得到了结论并利用结论解决了一些问题。孩子们,其实我们在不知不觉中已经走了数学家的探究历程……希望同学们在今后的学习中大胆应用,勇于创新,做最棒的自己
三角形的内角和数学教案6教学目标:
1. 掌握三角形内角和定理及其推论;
2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
教学重点:
三角形内角和定理及其推论。
教学难点:
三角形内角和定理的证明
教学用具:
直尺、微机
教学方法:
互动式,谈话法
教学过程:
1、创设情境,自然引入
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2 你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
2、设问质疑,探究尝试
(1)求证:三角形三个内角的和等于
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1 观察:三个内角拼成了一个
什么角?问题2 此实验给我们一个什么启示?
(把三角形的三个内角之和转化为一个平角)
问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值
,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?
问题2 三角形一个外角与它不相邻的两个内角有何关系?
问题3 三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
3、三角形三个内角关系的定理及推论
引导学生分析并严格书写解题过程
文档为doc格式